
CPSC 526 : Computer Animation

Term Project

“Using Fuzzy Logic to Control the Behaviour

of a Hockey Defenseman Character”

Erwin Tang

83458927

December 14, 2004



1 INTRODUCTION

The demand for increased realism in video games grows year

after year. Hockey video games in particular are a game

genre that relies on realism for a game to be fun and

accepted by the game-playing community. Because many people

play hockey and watch it on TV, hockey video games are held

to a high standard.

A large factor in providing realism in hockey games is how

the non-player characters behave during gameplay. These are

characters that are not controlled by the user. Are they in

the right position at the right time? Do they react as they

should to certain game situations? Behaviour which deviates

from the expected detracts from the overall experience of

playing the game.

In this report, I describe the use of fuzzy logic to

control the behaviour of a non-player defenseman character.

I chose to focus the control on the defenseman because in

hockey, this role requires the strictest adherence to

proper positioning. A good defenseman is always in the

right position on the ice and knows when to change

positions at the proper skating speed. This makes it easier

for us to describe how a good defenseman should react.

I chose to use fuzzy logic as the control scheme because it

has been shown to be applicable to video games [1] and

existing development tools are already in place [2], [3].

Fuzzy logic was also chosen because it can easily translate

real-world verbal descriptions into a control strategy.

Most control strategies require equations which describe

how one or many state variables change due to inputs. These

equations need to be precise. Fuzzy logic control however,

can be derived from verbal descriptions, such as “if the

puck is in this zone, skate here”. Fuzzy logic goes beyond

“crisp” models of AI and provides a much more realistic

representation of the world.

1.1 RELATED WORK

The video game industry is filled with instances of

proprietary code and a general desire to protect

intellectual property. Unlike academia, video game

developers are less open to share what novel ideas they

have come up with. As such, it was difficult to discover

what type of approaches have been tried to control the



behaviour of video game characters. It is known that fuzzy

logic has been used in video games in the past [1].

Listening to a classmate who has worked in the industry, he

spoke of hockey player characters being controlled by a

long series of “if-then” statements (without fuzzy

control). As he described it, the approach appears simple

but good enough for the game producers at this point.

1.2 OVERVIEW

Fig. 1 below shows an overview of the system that was

developed. The user interface allows the user to set the

state variables for the game and defenseman. Game state

variables are the game time, game score, puck possession,

and puck position. For the purposes of fuzzy control the

defenseman only has a single state variable, its position.

Note that there can be many sets of defenseman state

variables in the simulation (representing different

defensemen), but there can only be a single set of game

state variables.

Fig. 1: System overview

During each tick of the simulation, the state variables are

fed into the fuzzy logic system as inputs. The fuzzy logic

system then calculates an updated “desired position” for

the defenseman. Based on the difference between the

defenseman’s current position and the desired position, the

fuzzy logic then calculates the velocity of the defenseman.

Depending on this calculated velocity, the simulation will

fuzzy logic

graphics renderer

game state

variables

defenseman state

variables
user interface



then set the new position of the defenseman for the next

frame of animation. The higher the calculated velocity the

farther the defenseman object will be drawn from its last

position.

The fuzzy logic system that is implemented comes courtesy

of the Free Fuzzy Logic Library API [3], which is an open-

source implementation of a fuzzy logic engine.

Note that for the purposes of this simulation we will only

be controlling the position of player along the length of

the ice using fuzzy logic. For a defenseman, overall

positioning along the length of the ice is much more

important than across. Nonetheless, a simply but non-fuzzy

system is implemented to control cross-ice movement.

2 FUZZY LOGIC PRIMER

To fully understand the system being discussed, one must

understand a bit about fuzzy logic. Let us quickly review

the most relevant fuzzy logic concepts.

Traditional logic deals with “crisp” sets. An element in

the universe of discourse is either in a given set or it is

not. For example, for all elements of non-zero numbers,

they are either in the set of positive numbers or they are

not. For “crisp” logic, one cannot have a number that is

partially positive and partially negative. For fuzzy logic,

however, such a description is possible.

Usually, how much an element belongs to a set is called its

membership to that set. A function that describes this is

called the membership function. Values of membership range

from 0.0 to 1.0, inclusive, with 1.0 meaning an element

totally belonging to that set. Membership functions have a

particular shape as well. The most common shape is

triangular or trapezoidal, but other shapes can be used as

well.

Suppose that we consider having $200 belongs to set of

“insanely rich” people. If you have $100, you are only

“wealthy”. Finally, as you approach $0, you are considered

“poor”. In Fig. 2 then, a person with $67.50 belongs to the

“wealthy” set by 0.35 and the “poor” set by 0.10.



Fig. 2: Membership sets in a linguistic variable

The figure above could easily describe what is termed a

linguistic variable in fuzzy logic. In this case, we could

say the three sets are part of the “Economic Class”

variable. The way we divide a linguistic variable into sets

of membership functions is called fuzzification.

Once we have fuzzified input and output variables, we

describe the interaction between inputs and the output with

a series of if-then statements called rules. For a given

set of inputs, more than one rule may come into play, each

calling for a different type of action. The method in which

this is resolved is called defuzzification. This allows the

output to take on a crisp value. Defuzzification will be

elaborated on further in the next few sections.

3 IMPLEMENTATION

There were four steps to implementing the system:

fuzzifying the game and defenseman state variables,

generating the rules, writing the FCL files and using the

FFLL API, and integration with the graphics renderer.

3.1 FUZZIFYING THE GAME AND DEFENSEMAN STATE VARIABLES

It was decided that the fuzzy logic system would determine

two outputs for the simulation: the desired position and

the velocity for the defenseman. The inputs and outputs of

the system are summarized below in Fig. 3.



Fig. 3: Inputs and outputs for the system

Note that the defenseman’s position is not explicitly

included in the list of inputs anywhere. Instead, the

player position is taken into consideration in the

separation variable:

separation = puck_position – player_position

The act of fuzzifying variables is almost as much art as it

is science. A good first attempt will eliminate tweaking

once the system is in place, but adjustments can be made

later until the desired response is seen.

For the variable Puck_Position, the range of values

consisted of –100 to +100. This represents the position of

the puck along the length of the ice surface for a standard

200 ft NHL-size rink. Within this variable, seven sets were

used to fuzzify the range:

DDEF =  the deep part of the defensive zone

SDEF = the shallow part of the defensive zone

DNEU = the defensive part of the neutral zone

NEU = the middle part of the neutral zone

ONEU = the offensive part of the neutral zone

SOFF = the shallow part of the offensive zone

DOFF = the deep part of the offensive zone

Fig. 4 shows the fuzzified variable.

Output

Desired_Position

Inputs

Puck_Position

Possession

Game_Score

Game_Time

Output

Velocity

Input

Separation



Fig. 4: Variable Puck_Position

It only makes sense to fuzzify the variable

Desired_Position in the same way. After all, why use two

different ice surface representations?

For Possession we use singleton values to represent the

sets. Here we have a case of using fuzzy logic to represent

crisp values. There is no partial membership in sets for

this variable. Possession is 0 when no team has the puck, 1

when the user’s team has the puck, and –1 when the

opponent’s team has the puck. See Fig. 5 below.

Fig. 5: Variable Possession

For Game_Score, this represents the integer difference

between the user’s team and the opponents team. Any

negative value is assigned a 1.0 membership to the set BEH



(for behind). When the difference is positive, membership

fully belongs to the set AHE (for ahead). When the score is

tied, membership fully belongs to TIE (for tied). See Fig.

6 below.

Fig. 6: Variable Game_Score

For Game_Time, this represents the number of minutes

expired in a 60 minute hockey game. Games are divided into

20 minute periods for a total of three periods. There is a

special set named END which begins its influence with about

10 minutes left in the game. This allows for special

behaviour to come into play near the end of a game. See

Fig. 7 below.

Fig. 7: Variable Game_Time



For the output variable Velocity, the range of values are

from -29.3 ft/s to +29.3 ft/s. This is based on the top

skating speed of 20 mph for an NHL player [4]. The velocity

is positive when skating towards the offensive zone and

negative when skating back to the defensive zone. See Fig.

8 below.

Fig. 8: Variable Velocity

The input that determines Velocity is the variable

Separation. This variable was defined previously and

represents the distance between the defenseman and the

puck. A positive value means the puck is towards the

offensive zone (in front of the defenseman) and a negative

value means the puck is towards the defensive zone (behind

the defenseman). Though the labels are hard to see in Fig.

9, they are the exact same sets used in Velocity.

Fig. 9: Variable Separation



3.2 GENERATING THE RULES

The next step is to write the rules which govern the

desired behaviour of the outputs for the system. As

mentioned previously, these are a series of if-then

statements. Note that if one neglects to write a rule for a

particular set of inputs which can occur, the fuzzy logic

system will not know how to respond. That is, there will be

no value for the output in that case. This is why it is

extremely important to write rules which cover every

possible set of inputs.

Unfortunately, due to current limitations in the Free Fuzzy

Logic Library (FFLL) API, it cannot accept fuzzy rules with

OR statements. That is, it is not possible to write the

following rule:

IF (var_a IS HOT OR WARM) THEN (var_b IS OPEN)

Instead, we must write two statements which together, are

equivalent to the above:

IF (var_a IS HOT) THEN (var_b IS OPEN)

IF (var_a IS WARM) THEN (var_b IS OPEN)

One can easily see the problem faced without the use of OR

statements. For the variable Desired_Position, we require

7*3*3*4 = 252 rules to completely describe the set of all

possible inputs. It would tedious and prone to error if all

252 had to be written by hand. To solve this problem, a

rule generation program called rulegen was written to help

generate rules quickly. This program allows the user to

hold a variable steady at a particular value while

iterating through the values in the other variables. Using

rulegen, all 252 rules were written in a matter of minutes.

The rules for Velocity were much simpler to write. Because

the input Separation had only seven sets in it, only seven

rules had to be written.

It cannot be stressed enough how important it is to write

good rules that reflect the desired behaviour of the

output. Together with the way we fuzzify the variables, the

rules determine exactly how our defenseman will react in

game situations.



Keeping this in mind, I wrote two sets of rules for

Desired_Position. The first set describes what is known as

a “stay-at-home” defenseman. This type of player plays a

more conservative role in defense, staying back more than

joining the play on offense. The second set of rules

describes a more offensively-minded player, who knows their

role on defense, but stays closer to the puck in all

regions of the ice. This player is not afraid to stay in

the offensive zone in more situations.

For each set of rules, special behaviour kicks in at the

end of the game. Depending if one team is winning or

losing, the behaviour of the defenseman changes. If the

defenseman’s team is losing, then he will exhibit more

offensive behaviour. He will stay in the offensive zone in

situations that might be risky from a defensive point of

view, but worth it to tie up the game.

If the defenseman’s team is ahead, his behaviour will

become more conservative. Rarely will he venture into the

offensive zone, instead, he will adopt a more defensive

positional posture.

The entire set of rules used in the simulation maybe found

in Appendix A which contain the FCL files.

3.3 WRITING THE FCL FILES AND USING THE FFLL API

The FFLL API mentioned earlier takes as input something

called Fuzzy Control Language (FCL) files. FCL files are a

somewhat standard protocol for describing fuzzy logic

control systems [5]. They are essentially text files which

describe the linguistic variables (input and output) and

the way they have been fuzzified. The rules for the system

are also listed.

While the FCL standard is quite rich, unfortunately, the

FFLL API only supports a very small subset of the language.

As such, some of the more useful options (for example, OR

statements) are not available.

As mentioned previously, the FCL files for this system can

be found in Appendix A. There are two useful benefits to

using FCL files in an application. First, the behaviour of

the fuzzy logic system can be altered by simply editing the

FCL files in a text editor. No re-compilation of code is

necessary. Since FCL files are relatively easy to



understand, this gives the power to change the behaviour to

someone that isn’t necessarily a programmer. In a game

development environment, this gives a game designer much

more direct control on character behaviour.

The second benefit of using FCL files is that they can be

read in by a free viewer called Spark! [6]. Spark! uses a

graphical interface to display all the inputs and outputs

for a fuzzy logic system written in FCL. A user can use

sliders to vary the inputs to the system and immediately

see the resulting defuzzified output value. Because of

this, we can assess the performance of a fuzzy logic system

without running a single line of user code.

Consider Fig. 10 below which shows the output

Desired_Position for a particular set of inputs.

Fig. 10: Defuzzifying an output

We can see that the output is almost 0.25 for the SDEF zone

and about 0.38 for the DNEU zone. Defuzzification

determines exactly where the desired position should be.

The shaded area in the figure describes the contribution of

each set to the output. Defuzzifying the output involves

finding the center of area for the shaded region. In this

case, that value lies at around –29 feet behind the center

line.

A simple call to the FFLL API will open any user-specified

FCL file and initialize the fuzzy logic system for that

file. The returned object is called a model. Each model can



then spawn multiple children. One could then attach one

child for every game object, so that multiple objects could

use the same fuzzy logic model.

Inputs can be fed into the model at any time. Another call

to the API will return the output for the model.

3.4 INTEGRATION WITH THE GRAPHICS RENDERER

For this project, both OpenGL and GLUT (OpenGL Utility

Toolkit) were used to create graphics for the simulation.

The ice surface markings were drawn with OpenGL primitives.

The defensemen are represented as simple green OpenGL

points. Smaller points highlight each defenseman so that

one can distinguish between players. Teammates are also

drawn the same way, but without the highlight. Opposition

players are drawn in the same fashion but with a different

colour (yellow). The puck is also represented as a black

OpenGL point.

A set of indicators to the right of the ice surface

indicate which team has possession of the puck. For each

team, an icon is displayed. When a team has the puck, a box

is drawn around the icon. When no team has the puck no box

is drawn. See Fig. 11 below.

Fig. 11: Simulation screen capture



Every 33 milliseconds, a fuzzy logic system updates the

desired positions and velocities of the defensemen. After

the updates occur, a new frame in the simulation is drawn.

The user can adjust the positions of any on-ice object by

clicking and dragging defensemen, teammates, opponents, and

the puck. Users can also use the keyboard to adjust the

score and game time. Please refer to Appendix B for a full

list of commands.

4 TESTING AND RESULTS

For the purposes of testing, the following game situation

was developed. The simulation had two defenseman, a

teammate, an opponent, and the puck on the ice. The

following scenarios were tested.

Reacting to the puck moving, no possession

This test consisted of dragging the puck along the ice

surface with no team in possession of it. This corresponded

to variable Possession set to NEU.

The first observation was the defenseman did not seem to be

moving as fast as they should have been based on the

separation distance. Using the Spark! viewer, it was

discovered the maximum velocity defuzzified by the

configuration of the membership functions was several ft/s

below the 29.3 ft/s theoretical maximum. The shape of the

membership functions for Velocity and Separation had to be

tuned to achieve a greater calculated velocity. A good

understanding of the center of area defuzzification

calculation can lead to a much faster tuning of membership

functions. Results of tuning can be seen immediately using

the Spark! viewer.

The second observation was that while the defensemen went

to right general area of the ice based on the puck

position, they were sometimes a few feet too close or too

far away from the ideal position. This led to further

tuning of the shapes of the membership functions for

variables Desired_Position and Puck_Position. Once tuned

the defensemen went to the proper positions.



Reacting to the teammate with the puck

When the teammate moved with the puck, both defensemen

reacted as specified by their rules. The more offensively-

minded player stayed closer to the puck and stayed longer

in the offensive zone. The more defensive-minded player

followed his teammate at a farther distance.

Reacting to the opponent with the puck

When the opponent moved with the puck, both defensemen

reacted as specified by their rules. The more aggressive

player stayed closer to the puck as it traveled through the

neutral zone, while the more conservative player backed up

quicker and waited for the puck in the defensive zone.

Reacting to end of game, player’s team winning

In this situation, the player’s team is winning near the

end of the game. As stated by the rules, both defenseman

adopt a more defensive mindset. They are more prone to

staying in the defensive zone and wait for the opponent to

come to them. Only when their team has the puck do they

venture out of the defensive zone.

Reacting to end of game, player’s team losing

In this situation, the player’s team is losing near the end

of the game. As stated by the rules, both defenseman adopt

a more offensive mindset in hopes of tying the game.

Instead of vacating the offensive zone when the opposition

has the puck or the puck is loose, they stay in the zone to

help their forwards recover the puck. Also when the

opponent moves with the puck, both defensemen will follow

much closer in hopes of creating a turnover in possession.

5 CONCLUSIONS

As shown by the results of this project, it is possible to

control the behaviour of video game hockey characters by

using fuzzy logic.

One cannot overstate the importance of having sufficient

rules to cover all the expected input states. If a rule has

not been written for a particular set of states, the

character will not know what to do. Also, having the

correct rules and properly formed membership functions can



save significant development time. Fortunately, tuning and

tweaking of such parameters can be done until the desired

results are achieved.

One possible drawback of using fuzzy logic control is that

during the design process, it can be difficult to know what

set of inputs will give a specific output. For example, say

one must have a certain numerical output for a particular

rule. It is difficult to know what shape to make the

membership functions for the inputs to guarantee that

particular output.

The use of FCL files and the FFLL API is overall a great

convenience to the programmer. With API calls, the

fuzzification and defuzzification process is abstracted

away so that the programmer need not worry about those

details. The use of FCL files means that a non-programmer

can design the behaviour of the characters. This frees the

task of AI design from the programmer and gives it to

anyone who wants to do it.

The FFLL API has room for improvement. It’s inability to

read FCL files with OR statements leads to unnecessarily

long sets of rules. Development of fuzzy control rules can

be shortened considerably if this one constraint was

removed.

6 FUTURE WORK

There are several areas that could be refined. The first is

utilizing fuzzy logic to control cross-ice positioning.

Currently, cross-ice movement is dictated by a simple puck-

following algorithm.

Also, more players could be added to the simulation that

have roles that differ from the defenseman. Rules could be

written for forwards and goalies. It would be interesting

to see how those roles react with the defensemen.

Finally, one could add in more finer and detailed

behaviour. The current system deals with coarse positioning

and general movement. It does not dictate if things like

bodychecks, puck stealing, shot blocking, and fighting

occur. There could be layers of fuzzy logic control added

to deal with different levels of behaviour.



REFERENCES

[1] McCusky, Mason, “Fuzzy Logic for Video Games,” Game

Programming Gems, Charles River Media, 2000.

[2] Dybsand, Eric, “A Generic Fuzzy State Machine in C++,”

Game Programming Gems 2, Charles River Media, 2001.

[3] Free Fuzzy Logic Library,

http://ffll.sourceforge.net/api, September 2001.

[4] The Science of Hockey: Skating,

http://www.exploratorium.edu/hockey/skating2.html,

September, 2004.

[5] International Electrotechnical Commission IEC 61131

Draft 1.0, http://www.fuzzytech.com/binaries/ieccd1.pdf,

September 2001.

[6] Spark! Viewer, Louder Than a Bomb Software,

http://www.louderthanabomb.com/spark.htm, July 2004.



APPENDIX A: FCL FILES



(* FCL File for Desired_Position, conservative defenseman *)

FUNCTION_BLOCK

VAR_INPUT
Puck_Position REAL; (* RANGE(-100 .. 100) *)
Possession REAL; (* RANGE(-1 .. 1) *)
Game_Score REAL; (* RANGE(-3 .. 3) *)
Game_Time REAL; (* RANGE(0 .. 60) *)

END_VAR

VAR_OUTPUT
Desired_Position REAL; (* RANGE(-100 .. 100) *)

END_VAR

FUZZIFY Puck_Position
TERM DDEF := (-100, 0) (-100, 1) (-50, 0);
TERM SDEF := (-66, 0) (-42, 1) (-18, 0);
TERM DNEU := (-23.5, 0) (-13.5, 1) (-3.5, 0);
TERM NEU := (-10, 0) (0, 1) (10, 0);
TERM ONEU := (3.5, 0) (13.5, 1) (23.5, 0);
TERM SOFF := (18, 0) (42, 1) (66, 0);
TERM DOFF := (56, 0) (66, 1)(100, 1) (100, 0);

END_FUZZIFY

FUZZIFY Possession
TERM OPP := -1;
TERM NEU := 0;
TERM OWN := 1;

END_FUZZIFY

FUZZIFY Game_Score
TERM BEH := (-3, 0) (-3, 1) (-1, 1) (-1, 0);
TERM TIE := 0;
TERM AHE := (1, 0) (1, 1) (3, 1) (3, 0);

END_FUZZIFY

FUZZIFY Game_Time
TERM 1ST := (0, 0) (0, 1) (19, 1) (20, 0);
TERM 2ND := (20, 0) (20, 1) (39, 1) (40, 0);
TERM 3RD := (40, 0) (40, 1) (50, 1) (60, 0);
TERM END := (50, 0) (55, 1) (60, 1) (60, 0);

END_FUZZIFY

FUZZIFY Desired_Position
TERM DDEF := (-100, 0) (-100, 1) (-50, 0);
TERM SDEF := (-66, 0) (-42, 1) (-18, 0);
TERM DNEU := (-23.5, 0) (-13.5, 1) (-3.5, 0);
TERM NEU := (-10, 0) (0, 1) (10, 0);
TERM ONEU := (3.5, 0) (13.5, 1) (23.5, 0);
TERM SOFF := (18, 0) (42, 1) (66, 0);
TERM DOFF := (56, 0) (66, 1)(100, 1) (100, 0);

END_FUZZIFY

DEFUZZIFY Desired_Position
METHOD: COG;

END_DEFUZZIFY

RULEBLOCK first
AND:MIN;
ACCU:MAX;

RULE 0: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 1: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 2: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SOFF);
RULE 3: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);



RULE 4: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 5: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 6: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SOFF);
RULE 7: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS SOFF);
RULE 8: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 9: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 10: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 11: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 12: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SOFF);
RULE 13: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SOFF);
RULE 14: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 15: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 16: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 17: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 18: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SOFF);
RULE 19: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS SOFF);
RULE 20: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SOFF);
RULE 21: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SOFF);
RULE 22: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 23: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 24: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS ONEU);
RULE 25: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 26: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 27: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 28: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 29: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS ONEU);
RULE 30: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS ONEU);
RULE 31: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS ONEU);
RULE 32: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS ONEU);
RULE 33: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 34: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 35: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS ONEU);
RULE 36: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS ONEU);
RULE 37: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 38: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);



RULE 39: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 40: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 41: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS ONEU);
RULE 42: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS ONEU);
RULE 43: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS ONEU);
RULE 44: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS ONEU);
RULE 45: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 46: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 47: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS ONEU);
RULE 48: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS NEU);
RULE 49: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 50: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 51: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 52: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS NEU);
RULE 53: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS NEU);
RULE 54: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS NEU);
RULE 55: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS NEU);
RULE 56: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS NEU);
RULE 57: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 58: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 59: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 60: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS NEU);
RULE 61: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 62: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 63: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 64: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS NEU);
RULE 65: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS NEU);
RULE 66: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS NEU);
RULE 67: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS NEU);
RULE 68: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS NEU);
RULE 69: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 70: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 71: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 72: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 73: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);



RULE 74: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 75: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 76: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 77: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 78: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 79: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 80: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 81: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 82: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 83: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 84: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 85: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 86: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 87: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 88: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 89: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS DNEU);
RULE 90: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS DNEU);
RULE 91: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS DNEU);
RULE 92: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 93: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 94: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 95: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 96: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 97: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 98: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 99: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 100: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 101: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 102: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 103: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 104: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 105: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 106: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 107: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 108: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);



RULE 109: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 110: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 111: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 112: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 113: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS DNEU);
RULE 114: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS DNEU);
RULE 115: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 116: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 117: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 118: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 119: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 120: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SDEF);
RULE 121: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 122: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 123: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 124: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SDEF);
RULE 125: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SDEF);
RULE 126: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SDEF);
RULE 127: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS SDEF);
RULE 128: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SDEF);
RULE 129: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 130: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 131: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 132: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SDEF);
RULE 133: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 134: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 135: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 136: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SDEF);
RULE 137: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SDEF);
RULE 138: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SDEF);
RULE 139: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS SDEF);
RULE 140: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SDEF);
RULE 141: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 142: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 143: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);



RULE 144: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 145: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 146: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 147: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 148: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 149: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 150: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 151: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 152: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 153: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 154: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 155: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 156: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 157: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 158: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 159: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 160: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 161: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 162: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 163: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 164: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 165: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 166: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 167: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 168: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 169: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 170: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 171: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 172: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 173: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 174: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 175: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 176: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 177: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 178: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);



RULE 179: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 180: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 181: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 182: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 183: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 184: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 185: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 186: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 187: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 188: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 189: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 190: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 191: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 192: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 193: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 194: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 195: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 196: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 197: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 198: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 199: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 200: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 201: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 202: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 203: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 204: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 205: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 206: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 207: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 208: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 209: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 210: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 211: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 212: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 213: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);



RULE 214: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 215: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 216: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 217: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 218: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 219: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 220: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 221: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 222: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 223: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 224: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 225: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 226: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 227: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 228: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 229: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 230: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 231: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 232: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 233: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 234: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 235: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 236: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 237: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 238: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 239: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 240: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 241: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 242: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 243: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 244: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 245: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 246: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 247: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 248: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);



RULE 249: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 250: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 251: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
END_RULEBLOCK

END_FUNCTION_BLOCK



(* FCL File for Desired_Position, aggressive defenseman *)

FUNCTION_BLOCK

VAR_INPUT
Puck_Position REAL; (* RANGE(-100 .. 100) *)
Possession REAL; (* RANGE(-1 .. 1) *)
Game_Score REAL; (* RANGE(-3 .. 3) *)
Game_Time REAL; (* RANGE(0 .. 60) *)

END_VAR

VAR_OUTPUT
Desired_Position REAL; (* RANGE(-100 .. 100) *)

END_VAR

FUZZIFY Puck_Position
TERM DDEF := (-100, 0) (-100, 1) (-50, 0);
TERM SDEF := (-66, 0) (-42, 1) (-18, 0);
TERM DNEU := (-23.5, 0) (-13.5, 1) (-3.5, 0);
TERM NEU := (-10, 0) (0, 1) (10, 0);
TERM ONEU := (3.5, 0) (13.5, 1) (23.5, 0);
TERM SOFF := (18, 0) (42, 1) (66, 0);
TERM DOFF := (56, 0) (66, 1)(100, 1) (100, 0);

END_FUZZIFY

FUZZIFY Possession
TERM OPP := -1;
TERM NEU := 0;
TERM OWN := 1;

END_FUZZIFY

FUZZIFY Game_Score
TERM BEH := (-3, 0) (-3, 1) (-1, 1) (-1, 0);
TERM TIE := 0;
TERM AHE := (1, 0) (1, 1) (3, 1) (3, 0);

END_FUZZIFY

FUZZIFY Game_Time
TERM 1ST := (0, 0) (0, 1) (19, 1) (20, 0);
TERM 2ND := (20, 0) (20, 1) (39, 1) (40, 0);
TERM 3RD := (40, 0) (40, 1) (50, 1) (60, 0);
TERM END := (50, 0) (55, 1) (60, 1) (60, 0);

END_FUZZIFY

FUZZIFY Desired_Position
TERM DDEF := (-100, 0) (-100, 1) (-50, 0);
TERM SDEF := (-66, 0) (-42, 1) (-18, 0);
TERM DNEU := (-23.5, 0) (-13.5, 1) (-3.5, 0);
TERM NEU := (-10, 0) (0, 1) (10, 0);
TERM ONEU := (3.5, 0) (13.5, 1) (23.5, 0);
TERM SOFF := (18, 0) (42, 1) (66, 0);
TERM DOFF := (56, 0) (66, 1)(100, 1) (100, 0);

END_FUZZIFY

DEFUZZIFY Desired_Position
METHOD: COG;

END_DEFUZZIFY

RULEBLOCK first
AND:MIN;
ACCU:MAX;

RULE 0: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 1: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 2: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SOFF);
RULE 3: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);



RULE 4: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 5: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 6: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SOFF);
RULE 7: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS SOFF);
RULE 8: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 9: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 10: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 11: IF (Puck_Position IS DOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 12: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SOFF);
RULE 13: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SOFF);
RULE 14: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 15: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 16: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 17: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 18: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SOFF);
RULE 19: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS SOFF);
RULE 20: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SOFF);
RULE 21: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SOFF);
RULE 22: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 23: IF (Puck_Position IS DOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS ONEU);
RULE 24: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SOFF);
RULE 25: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SOFF);
RULE 26: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 27: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 28: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS SOFF);
RULE 29: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS SOFF);
RULE 30: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS SOFF);
RULE 31: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS SOFF);
RULE 32: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SOFF);
RULE 33: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SOFF);
RULE 34: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SOFF);
RULE 35: IF (Puck_Position IS DOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 36: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS ONEU);
RULE 37: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 38: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);



RULE 39: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 40: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 41: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS ONEU);
RULE 42: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS ONEU);
RULE 43: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS ONEU);
RULE 44: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS ONEU);
RULE 45: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 46: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 47: IF (Puck_Position IS SOFF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS ONEU);
RULE 48: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 49: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 50: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 51: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 52: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 53: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS ONEU);
RULE 54: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS ONEU);
RULE 55: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS ONEU);
RULE 56: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 57: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 58: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 59: IF (Puck_Position IS SOFF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 60: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 61: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 62: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 63: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SOFF);
RULE 64: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 65: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS ONEU);
RULE 66: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS ONEU);
RULE 67: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS ONEU);
RULE 68: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS ONEU);
RULE 69: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS ONEU);
RULE 70: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS ONEU);
RULE 71: IF (Puck_Position IS SOFF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 72: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 73: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);



RULE 74: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 75: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 76: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 77: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 78: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 79: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 80: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 81: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 82: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 83: IF (Puck_Position IS ONEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 84: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 85: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 86: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 87: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 88: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS NEU);
RULE 89: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS NEU);
RULE 90: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS NEU);
RULE 91: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS NEU);
RULE 92: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 93: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 94: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 95: IF (Puck_Position IS ONEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 96: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 97: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 98: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 99: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 100: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 101: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 102: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 103: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS NEU);
RULE 104: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS NEU);
RULE 105: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS NEU);
RULE 106: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS NEU);
RULE 107: IF (Puck_Position IS ONEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 108: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);



RULE 109: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 110: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 111: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 112: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 113: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS DNEU);
RULE 114: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS DNEU);
RULE 115: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 116: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 117: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 118: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 119: IF (Puck_Position IS NEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 120: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 121: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 122: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 123: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 124: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 125: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS DNEU);
RULE 126: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS DNEU);
RULE 127: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS DNEU);
RULE 128: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 129: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 130: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 131: IF (Puck_Position IS NEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 132: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 133: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 134: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 135: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 136: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 137: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 2ND)
THEN (Desired_Position IS DNEU);
RULE 138: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS 3RD)
THEN (Desired_Position IS DNEU);
RULE 139: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS END)
THEN (Desired_Position IS DNEU);
RULE 140: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS 1ST)
THEN (Desired_Position IS DNEU);
RULE 141: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 142: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 143: IF (Puck_Position IS NEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);



RULE 144: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 145: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 146: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 147: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 148: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 149: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 150: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 151: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DNEU);
RULE 152: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DNEU);
RULE 153: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DNEU);
RULE 154: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DNEU);
RULE 155: IF (Puck_Position IS DNEU) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 156: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 157: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 158: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 159: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 160: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 161: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 162: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 163: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 164: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 165: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 166: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 167: IF (Puck_Position IS DNEU) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 168: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 169: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 170: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 171: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 172: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 173: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 174: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 175: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 176: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 177: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 178: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);



RULE 179: IF (Puck_Position IS DNEU) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 180: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 181: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 182: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 183: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 184: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 185: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 186: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 187: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 188: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 189: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 190: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 191: IF (Puck_Position IS SDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 192: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 193: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 194: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 195: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 196: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 197: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 198: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 199: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 200: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 201: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 202: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 203: IF (Puck_Position IS SDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 204: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 205: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 206: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 207: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 208: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 209: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);
RULE 210: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 211: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 212: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS SDEF);
RULE 213: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS SDEF);



RULE 214: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS SDEF);
RULE 215: IF (Puck_Position IS SDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS SDEF);
RULE 216: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 217: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 218: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 219: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 220: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 221: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 222: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 223: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 224: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 225: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 226: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 227: IF (Puck_Position IS DDEF) AND (Possession IS OWN) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 228: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 229: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 230: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 231: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 232: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 233: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 234: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 235: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 236: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 237: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 238: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 239: IF (Puck_Position IS DDEF) AND (Possession IS NEU) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 240: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 241: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 242: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 243: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS BEH) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 244: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);
RULE 245: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 246: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 247: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS TIE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
RULE 248: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
1ST) THEN (Desired_Position IS DDEF);



RULE 249: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
2ND) THEN (Desired_Position IS DDEF);
RULE 250: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
3RD) THEN (Desired_Position IS DDEF);
RULE 251: IF (Puck_Position IS DDEF) AND (Possession IS OPP) AND (Game_Score IS AHE) AND (Game_Time IS
END) THEN (Desired_Position IS DDEF);
END_RULEBLOCK

END_FUNCTION_BLOCK



(* FCL File for Velocity *)

FUNCTION_BLOCK

VAR_INPUT
Separation REAL; (* RANGE(-200 .. 200) *)

END_VAR

VAR_OUTPUT
Velocity REAL; (* RANGE(-29.3 .. 29.3) *)

END_VAR

FUZZIFY Separation
TERM LG_NEG := (-200, 0) (-200, 1) (-110, 1) (-40, 0);
TERM MD_NEG := (-130,0) (-110, 1) (-58, 1) (-15, 0);
TERM SM_NEG := (-50, 0) (-10, 1) (0, 0);
TERM ZERO := (-15, 0) (0, 1) (15, 0);
TERM SM_POS := (0, 0) (10, 1) (50, 0);
TERM MD_POS := (15, 0) (58, 1) (110, 1) (130, 0);
TERM LG_POS := (40, 0) (110, 1)(200, 1) (200, 0);

END_FUZZIFY

FUZZIFY Velocity
TERM LG_NEG := (-29.3, 0) (-29.3, 1) (-26, 0);
TERM MD_NEG := (-26, 0) (-15, 1) (-10, 0);
TERM SM_NEG := (-13, 0) (-8, 1) (-1, 0);
TERM ZERO := (-2, 0) (0, 1) (2, 0);
TERM SM_POS := (1, 0) (8, 1) (13, 0);
TERM MD_POS := (10, 0) (15, 1) (26, 0);
TERM LG_POS := (26, 0) (29.3, 1) (29.3, 0);

END_FUZZIFY

DEFUZZIFY Velocity
METHOD: COG;

END_DEFUZZIFY

RULEBLOCK first
AND:MIN;
ACCU:MAX;
RULE 0: IF (Separation IS LG_NEG) THEN (Velocity IS LG_NEG);
RULE 1: IF (Separation IS MD_NEG) THEN (Velocity IS LG_NEG);
RULE 2: IF (Separation IS SM_NEG) THEN (Velocity IS SM_NEG);
RULE 3: IF (Separation IS ZERO) THEN (Velocity IS ZERO);
RULE 4: IF (Separation IS SM_POS) THEN (Velocity IS SM_POS);
RULE 5: IF (Separation IS MD_POS) THEN (Velocity IS LG_POS);
RULE 6: IF (Separation IS LG_POS) THEN (Velocity IS LG_POS);

END_RULEBLOCK

END_FUNCTION_BLOCK



APPENDIX B : LIST OF SIMULATION COMMANDS



Changing object positions

The user can change the position of the defensemen,

teammate, opponent, and puck by clicking on and dragging

the particular simulation object.

Moving with the puck – “g” key

The simulation allows the user to move both the teammate

and the puck or the opponent and the puck at the same time.

This effectively creates the effect of a player skating

with puck. To do this, hit the “g” key with the simulation

window active. This will enable group selection. Now click

and drag either the teammate (in green) or the opponent in

(yellow) to the puck. Once contact is made, the puck will

stay with the object. To disable group selection, hit the

“g” key again.

Changing the game score – “s” key

With the simulation window active, hit the “s” key to

change the score of the game. Then bring up the console

window and answer the questions to change the score.

Changing the game time – “t” key

With the simulation window active, hit the “t” key to

change the game time. Then bring up the console window and

answer the questions to change the game time.

Quitting the simulation – “q” key

To quit the simulation at any time, hit the “q” key.


